Average Resistance of Toroidal Graphs
نویسندگان
چکیده
Abstract. The average effective resistance of a graph is a relevant performance index in many applications, including distributed estimation and control of network systems. In this paper, we study how the average resistance depends on the graph topology and specifically on the dimension of the graph. We concentrate on d-dimensional toroidal grids and we exploit the connection between resistance and Laplacian eigenvalues. Our analysis provides tight estimates of the average resistance, which are key to study its asymptotic behavior when the number of nodes grows to infinity. In dimension two, the average resistance diverges: in this case, we are able to capture its rate of growth when the sides of the grid grow at different rates. In higher dimensions, the average resistance is bounded uniformly in the number of nodes: in this case, we conjecture that its value is of order 1/d for large d. We prove this fact for hypercubes and when the side lengths go to infinity.
منابع مشابه
Note on "Average resistance of toroidal graphs" by Rossi, Frasca and Fagnani
In our recent paper W.S. Rossi, P. Frasca and F. Fagnani, “Average resistance of toroidal graphs”, SIAM Journal on Control and Optimization, 53(4):2541–2557, 2015, we studied how the average resistances of d-dimensional toroidal grids depend on the graph topology and on the dimension of the graph. Our results were based on the connection between resistance and Laplacian eigenvalues. In this not...
متن کاملEffective resistance of toroidal graphs; some sharper results and applications
The average effective resistance of a graph can be computed as a function of its eigenvalues. Using this formula and focusing on toroidal d-dimensional graphs, we study the role of the network topology and specifically of the graph dimension in determining the resistance. Considering sequences of graphs of increasing size, we study the asymptotical behavior of the effective resistance, proving ...
متن کاملMinimum Tenacity of Toroidal graphs
The tenacity of a graph G, T(G), is dened by T(G) = min{[|S|+τ(G-S)]/[ω(G-S)]}, where the minimum is taken over all vertex cutsets S of G. We dene τ(G - S) to be the number of the vertices in the largest component of the graph G - S, and ω(G - S) be the number of components of G - S.In this paper a lower bound for the tenacity T(G) of a graph with genus γ(G) is obtained using the graph's connec...
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملOn list vertex 2-arboricity of toroidal graphs without cycles of specific length
The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph. A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$, one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Control and Optimization
دوره 53 شماره
صفحات -
تاریخ انتشار 2015